Monday, October 6, 2008

Cheap access to space - 10, 20, 100 years?

Sometimes referred to as beanstalks, or even sky-hooks, the space elevator will probably be the main shipping workhorse from orbit to Mars and the Moon. With Earth's higher gravity, it is a more difficult technology, but if we can get it working then continuous access to space is assured at a price we can afford.

For more information, visit the Space Elevator Reference site.
'Space elevator' would take humans into orbit - CNN.com:
"LONDON, England (CNN) -- A new space race is officially under way, and this one should have the sci-fi geeks salivating.

The project is a 'space elevator,' and some experts now believe that the concept is well within the bounds of possibility -- maybe even within our lifetimes.

A conference discussing developments in space elevator concepts is being held in Japan in November, and hundreds of engineers and scientists from Asia, Europe and the Americas are working to design the only lift that will take you directly to the one hundred-thousandth floor.

Despite these developments, you could be excused for thinking it all sounds a little far-fetched.

Indeed, if successfully built, the space elevator would be an unprecedented feat of human engineering.

A cable anchored to the Earth's surface, reaching tens of thousands of kilometers into space, balanced with a counterweight attached at the other end is the basic design for the elevator.

If it sounds like the stuff of fiction, maybe that's because it once was.

In 1979, Arthur C. Clarke's novel "The Fountains of Paradise" brought the idea of a space elevator to a mass audience. Charles Sheffield's "The Web Between the Worlds" also featured the building of a space elevator.

But, jump out of the storybooks and fast-forward nearly three decades, and Japanese scientists at the Japan Space Elevator Association are working seriously on the space-elevator project.

Association spokesman Akira Tsuchida said his organization was working with U.S.-based Spaceward Foundation and a European organization based in Luxembourg to develop an elevator design.

The Liftport Group in the U.S. is also working on developing a design, and in total it's believed that more than 300 scientists and engineers are engaged in such work around the globe.

NASA is holding a $4 million Space Elevator Challenge to encourage designs for a successful space elevator.

Tsuchida said the technology driving the race to build the first space elevator is the quickly developing material carbon nanotube. It is lightweight and has a tensile strength 180 times stronger than that of a steel cable. Currently, it is the only material with the potential to be strong enough to use to manufacture elevator cable, according to Tsuchida.

"At present we have a tether which is made of carbon nanotube, and has one-third or one-quarter of the strength required to make a space elevator. We expect that we will have strong enough cable in the 2020s or 2030s," Tsuchida said.
. . .
Tsuchida said some possible locations for an elevator include the South China Sea, western Australia and the Galapagos Islands in the Pacific Ocean. He said all of those locations usually avoided typhoons, which could pose a threat to the safety of an elevator.

"As the base of space elevator will be located on geosynchronous orbit, [the] space elevator ground station should be located near the equator," he said."

No comments: